Iterative Learning Control of Energy Management System: Survey on Multi-Agent System Framework
نویسندگان
چکیده
This paper presents a brief survey of recent works on Iterative Learning Control (ILC) of Energy Management System (EMS) based on a framework of Multi-Agent System (MAS). ILC is a control methodology which is especially suitable for dynamical systems whose control tasks are executed in a finite time interval and are repeated over and over. The key idea of ILC is to take available system information in the past and current runs, to generate the control input for the next run. EMS is a computer-based system to monitor energy consumption, control operation, and optimize energy supplies and demands. EMS can be naturally modeled as MAS since each power-generated or powerconsumed component of EMS can be cast as agent. Each agent of MAS is a dynamical system itself and has its own target such as tracking desired trajectory and minimizing energy. Moreover, there are common objectives of EMS which aim to attain its energy efficiency, reliability and optimality. Then one agent can cooperate with other agents to achieve some global objectives, in addition to their own local goals, by exchanging information with other agents. Lastly, we will explore some open research problems and their potential applications.
منابع مشابه
An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملVoltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems
This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملA multi Agent System Based on Modified Shifting Bottleneck and Search Techniques for Job Shop Scheduling Problems
This paper presents a multi agent system for the job shop scheduling problems. The proposed system consists of initial scheduling agent, search agents, and schedule management agent. In initial scheduling agent, a modified Shifting Bottleneck is proposed. That is, an effective heuristic approach and can generate a good solution in a low computational effort. In search agents, a hybrid search ap...
متن کاملA Multi-Agent Machine Learning Framework for Intelligent Energy Demand Management
In order to cope with the unpredictability of the energy market and provide rapid response when supply is strained by demand, an emerging technology, called energy demand management, enables appliances to manage and defer their electricity consumption when price soars. Initial experiments with our multiagent, power load management simulator, showed a marked reduction in energy consumption when ...
متن کامل